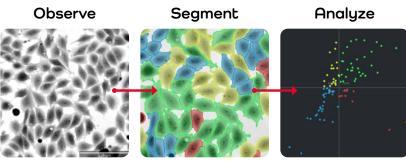
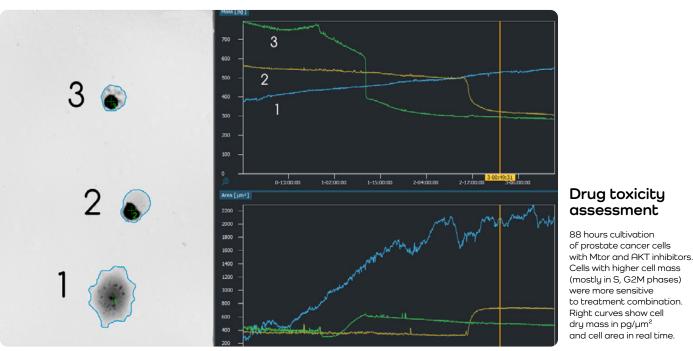

Q-Phase

QPI solution for reliable automated segmentation and cell culture analysis

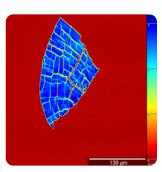

Q-Phase is a holographic microscope based on a patented technology for Quantitative Phase Imaging (QPI).


Q-Phase creates time-lapse phase images with realistic values for precise measurement of biophysical cell parameters including cell dry mass distribution.

Telight Q-Phase

Q-Phase is a fast and accurate tool for assessment the influence and toxicity of tested drugs or biomaterials on living cells. Due to the label-free technology and the extremely low phototoxicity, the tested agent would represent the major variable that affects the cells behavior during the experiment.

Application examples


Cell biology

Migration studies

Extracellular matrix

Refractive index

Key advantages

- Fully equipped live-cell imaging system
- Quantitative | cell dry mass and cell morphology profiling
- Label free | non-destructive with no phototoxicity
- Accurate segmentation of cells outlines

- QPI in scattering and turbid media
- Multimodal imaging | combining QPI and fluorescence
- Integrated software for live cell imaging analysis

Specifications

Microscope

Microscope configuration	transmission inverted microscope
Microscopy techniques	holography (quantitative phase imaging),
wiicroscopy techniques	epifluorescence,
	simulated DIC, brightfield, high-pass filtered phase
Objectives	magnification 4× to 60×
Objective turret	6-position, motorized exchange
Light source	halogen lamp
Operating wavelength	650 nm
Sample stage	motorized, 130 mm × 90 mm travel range
Focusing	motorized objective turret, 8 mm travel range
Piezo-focusing	optional, travel range 500 μm
Lateral resolution	3.3 μm with 4× NA 0.1 objective
	0.57 μm with 60× NA 1.4 objective
Field of view	objective dependent, up to 1.7 mm × 1.7 mm
	with 4× objective
Acquisition framerate	5.5 fps at full frame (option: higher framerates possible)
Reconstructed phase image size	1200 px × 1200 px
Illumination power at sample plane	down to 0.2 μW/cm²
Phase detection	down to 0.0035 rad (0.7 nm at $\Delta n = 0.5$)
sensitivity	Δn - difference between refractive indexes of sample and surrounding media
Power	230 V/50 Hz (120 V/60 Hz optional), 1200 VA
Dimensions	1100 mm × 950 mm × 1620 mm microscope
$(W \times L \times H)$	with incubator
	2515 mm × 974 mm × 1620 mm total
	with operator table
Weight	350 kg (including microscope table, fluorescence
	module and microscope incubator)
Field and aperture diaph	
	uorescence module or other additional techniques
Microscope table with ar	-
Control panel with multi- rotary knobs	functional touchscreen, sample stage joystick and
Microscope incubator wi data logging (optional)	th computer temperature setting and temperature
	precise and long-term control of temperature, ntrations (optional)

Fluorescence module (optional)

Light engines	Lumencor with 3 channels (optionally up to 5 channels)
Detectors	standard CCD 1.4 Mpix (1392 px × 1040 px)
	optional high-sensitivity sCMOS 5.5 Mpix (2560 px \times 2160 px)
Filters	3 multichannel filter cubes, motorized channel switching

Q-Phase users

University of North Florida & Mayo Clinic, Jacksonville, USA

Cancer research

Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany

Quantitative analysis of protein droplets, mouse skull progenitors, growth & degrowth in planarian flatworms

Masaryk University Brno, Czech Republic, Faculty of Medicine, Department of Pathological Physiology

- S. Dostalova, et al.: Prostate-Specific Membrane Antigen-Targeted Site-Directed Antibody-Conjugated Apoferritin Nanovehicle Favorably Influences *In Vivo* Side Effects of Doxorubicin, Scientific Reports 8:8867, 2018.
- J. Balvan, et al.: Oxidative Stress Resistance in Metastatic Prostate Cancer: Renewal by Self-Eating, PLoS One 10(12), 2015.
- J. Balvan, et al.: Multimodal Holographic Microscopy: Distinction between Apoptosis and Oncosis, PloS One 10(3), 2015.

Brno University of Technology, Experimental Biophotonics Group

- B. Gal, et al.: Distinctive behaviour of live biopsy-derived carcinoma cells unveiled using coherence-controlled holographic microscopy, PLoS One 12(8), 2017.
- L. Strbkova, et al.: Automated classification of cell morphology by coherence-controlled holographic microscopy, J. Biomed. Opt. 22(8), 2017.
- L. Strbkova, et al.: The adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma polymers studied by holographic microscopy, Surface and Coatings Technology 295, 2016.
- J. Collakova, et al.: Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion, J. Biomed. Opt. 20(11), 2015.
- V. Kollarova, et al.: Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope, J. Biomed. Opt. 20(11), 2015.
- A. Krizova, et al.: Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior, J. Biomed. Opt. 20(11), 2015.
- M. Lostak, et al.: Coherence-controlled holographic microscopy in diffuse media, Opt. Express 22(4), 2014.
- H. Janeckova, et al.: Proving Tumour Cells by Acute Nutritional/Energy Deprivation as a Survival Threat: A Task for Microscopy, Anticancer Res. 29(6), 2009.

Institute of Molecular Genetics AS CR, Prague, Czech Republic, Laboratory of Light Microscopy and Cytometry

- Osmotic changes in cells, cell reaction to treatment, cells in 3D environment
- L. Pastorek, et al.: Holography microscopy as an artifact-free alternative to phase-contrast, Histochem Cell Biol. 149(2), 2018.

Libušina tř. 21 623 00 Brno - Kohoutovice Czech Republic (email) sales@telight.eu