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Abstract: We demonstrate for the first time that an ultra-broadband 7 femtosecond (fs) few-
cycle laser can be used for multicolor nonlinear imaging in a single channel detection 
geometry, when employing a time-resolved fluorescence detection scheme. On a multi-
chromophore-labelled cell sample we show that the few-cycle laser can efficiently excite the 
multiple chromophores over a >400 nm two-photon absorption range. By combining the few-
cycle laser excitation with time-correlated single-photon counting (TCSPC) detection to 
record two-photon fluorescence lifetime imaging microscopy (FLIM) images, the localization 
of different chromophores in the cell can be identified based on their fluorescence decay 
properties. The novel SyncRGB-FLIM multi-color bioimaging technique opens the possibility 
of real-time protein-protein interaction studies, where its single-scan operation translates into 
reduced laser exposure of the sample, resulting in more photoprotective conditions for 
biological specimens. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Cellular processes govern and are the basis for life, where proteins play a key role. The highly 
complex cellular mechanics are governed by protein-protein interactions, which allow 
orchestrated action of chemical processes related to metabolism, cell growth, differentiation, 
and nutrient uptake, to name a few [1]. Protein-protein interactions often influence chemical 
reactions in the direct environment and the protein molecular complexes might change their 
tertiary conformation or intracellular location enabling trafficking, ion/proton transfer or the 
dislocation of molecules, e.g. along filament strands. These interactions mostly involve 
multiple constituents and to observe the effect of one protein action in sync with the reacting 
protein species is not trivial but could potentially enable a deeper understanding of the 
relevant interactions that govern the basic building blocks of living systems. 

Light microscopy in its various forms is still considered a cornerstone and go-to technique 
accounting for about 80% of the research methodologies used in life sciences. With 
developments in advanced optical microscopy and through different configurations, light 
microscopy provides a noninvasive way of imaging the subcellular structure of cells. Contrast 
between different cellular constituents is created via intensity, lifetime, spectra or labeling [2–
6] and optical techniques are therefore perfectly suited to solve the challenge of tracking
protein-protein interactions in real time.
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Scanning multi-photon microscopy belongs to the family of fluorescence based 
microscope techniques and has become an integral part of bioimaging where the intrinsic 
confinement of the excitation light in both the spatial and phase domains enables separation 
of subcellular features against the neighboring background [5]. 

Ultrashort pulse lasers are commonly used to generate the necessary photon density for 
multi-photon microscopy. Standard laser systems typically provide pulses with durations 
ranging from a few hundred fs down to tens of fs, with full-width at half-maximum (FWHM) 
spectral widths of the order of a few tens of nm. For fs laser systems, achieving optimal 
contrast in imaging applications relies greatly on the quality of the laser pulse at the sample 
plane. Propagation through dispersive elements on the way to the sample, especially highly 
dispersive elements such as high numerical aperture (NA) microscope objectives, results in 
chirped and temporally stretched non-Fourier transform-limited (non-FT-limited) pulses with 
reduced peak power at the focus of the objective [7,8]. Traditional pulse characterization 
techniques, such as interferometric autocorrelation, have intrinsic ambiguities/errors that 
increase for shorter pulses [9]. Such measurements can easily give an underestimation of the 
temporal duration, in particular for few-cycle pulses in the presence of high-order dispersion, 
due to the reduced coherence produced by high-order terms [10]. Furthermore, an 
autocorrelation measurement forcibly involves a setup external to the microscope workings, 
where the fs laser beam must be split into two replicas, with one of the replicas temporally 
delayed using a precision translation stage, and finally recombined with interferometric 
precision into a collinear beam prior to traversing the microscope [11]. 

Imaging strategies revolve around tuning the central wavelength of the laser to coincide 
with the two-photon absorption maximum of the chromophore or chromophores on the 
sample or, alternatively, using several excitation wavelengths and compiling a sequence of 
images. Both these methods have intrinsic drawbacks. In the former not all chromophores are 
efficiently excited and in the latter individual cell constituents cannot be tracked 
simultaneously, rendering fast processes at the cellular level impossible to track, and the 
longer exposure during multiple scans can further lead to photo-toxicity and photo-induced 
damage. Efficient simultaneous excitation of multiple different chromophores is therefore a 
highly desired capability in the field of bioimaging, and several techniques have been 
implemented in view of this goal. Individual excitation bands have either been combined in 
setups employing multiple detectors [12–14] or measured sequentially with a single detector 
configuration [15]. Another strategy involves using sub-10-fs ultra-broadband fs lasers [16], 
where the emitted spectra can span up to several hundred nm, approaching the full effective 
gain bandwidth of the laser medium. The broad emission can excite multiple chromophores 
with distinct absorption spectra which have been shown to be separately detectable either by 
spectral analysis in mixed liquid samples [17] or by intensity measurements with multiple 
channel detectors on 2D samples [18]. Different parts of the ultra-broadband laser spectrum 
can also be used to access different imaging modalities simultaneously, such as combining 
coherent anti-Stokes Raman scattering (CARS) with two-photon fluorescence and second-
harmonic generation (SHG) [19]. The important parameter space of fluorescence lifetime 
imaging microscopy (FLIM), a technique capable of differentiating between several dyes 
even when the signal originates from the same excitation volume [20,21], have not so far 
been explored with ultra-broadband excitation. FLIM is the technique behind multi-photon 
fluorescence lifetime imaging microscopy (MP-FLIM), a powerful tool in cell biology and 
bioimaging applications. Time-correlated single-photon counting (TCSPC) [22] is one way of 
implementing FLIM. Herein, each detected photon is given a time stamp in relation to the 
pulsed excitation, and a photon arrival time histogram is created, which can be related to the 
fluorescence decay time of the chromophores. The lifetime of the single chromophore 
depends on the local environment, where FLIM microscopy can deliver information about 
protein interaction, metabolic state and conformation changes [22]. 
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In this paper we present the SyncRGB method, which enables simultaneous tracking of 
multiple chromophores within a single scan and with a single detector. To show the merits of 
the SyncRGB method with an ultra-broadband 7 fs laser, a comparison with the standard 
method based on a relatively narrowband tunable 70 fs laser is performed. For the 
comparison, both intensity and, for the first time, TCSPC imaging are used as measuring 
modalities. In the experiments, both laser systems are coupled to a custom-built inverted 
multi-photon microscope equipped with a single detector and optimized at the focus either via 
standard autocorrelation measurements (narrowband laser) or by using the d-scan ultrashort 
pulse characterization technique (ultra-broadband laser). 

2. Materials and methods

2.1 Sample preparation 

For 2D images, a multicolor-labeled 2D FluoCells #1 (Thermofisher) test sample containing 
bovine pulmonary artery endothelial cells (BPAEC) with DAPI labeling the nuclei, Alexa 
Fluor 488 the actin filaments and MitoTracker Red labeling mitochondria was employed. 
Adapted two-photon absorption [23,24] spectra for DAPI, Alexa Fluor 488 and MitoTracker 
Red can be seen in Fig. 1(a). 

For 3D imaging and large area 2D scans, swine carotid samples were used. All procedures 
for provision of animal samples were approved by the Direção Geral de Alimentação e 
Veterinária, Portugal (No. 15.078.UDER). Swine carotid arteries were supplied by a local 
slaughter house (Carnes Landeiro, S.A., Barcelos) and transported to the lab on ice. Upon 
arrival to the lab, arteries were rinsed with saline buffer (PBS - phosphate-buffered saline) 
and loose connective and fatty tissues were removed. The samples were stored in –80°C 
storage freezers. A 2-mm-tall tubular section of an artery was cut from the thawed sample and 
mounted standing on a #1.5 coverslip. Before the experiments, samples were thawed at room 
temperature for 30 minutes, then incubated with nuclei staining Hoechst 33342 solution (Life 
Technologies) diluted to 1 μg/mL in MilliQ water for 20 min to label the cell nuclei of the 
endothelial layer of the artery wall. The carotids were washed three times with PBS solution 
and embedded in a 7% gelatin solution (in PBS) for support and conservation. 
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2.2 Experimental setup 

As a standard multi-photon excitation source we use a Ti:Sapphire laser oscillator (Tsunami 
3969-15HP, tuning range 700-1080 nm, Spectra-Physics, Newport) with a repetition rate of 
80 MHz pumped by a 15W 532 nm DPSS (diode-pumped solid-state) laser (Spectra-Physics 
Millennia 15). The oscillator is tuned to 775 nm or to 730 nm (as seen in Fig. 1(b)) and laser 
power is controlled by reflective ND filters. For compression and compensation of the group 
delay dispersion (GDD) of the complete microscope system (approximately 4000 fs2) we used 
a prism compression setup composed of an SF10 prism, a corner cube and a rooftop mirror 
[25] through which the laser passes four times. 

The ultra-broadband 7 fs laser system is a custom-built single-box Kerr-lens mode-locked 
laser oscillator (Enora, Sphere Ultrafast Photonics) with an output spectra practically covering 
the full tuning range of the Ti:Sapphire crystal (660-1065 nm, as seen in Fig. 1(b)). This 
octave-spanning laser system and its detailed temporal and spectral characterization have 
been described elsewhere [26,27]. Dispersion pre-compensation, pulse compression and 
measurement at the focus of the microscope objectives was performed with a d-scan system 
(Sphere Ultrafast Photonics). 

The laser pulses are guided into a custom-built microscope (see Fig. 1(b)) based on an 
inverted microscope platform (R21, MadCityLabs) by steering silver mirrors, and expanded 
by a set of lenses. The sample scanner is a combined micro- and closed-loop nano-positioning 
system (NanoLPS200, MadCityLabs) controlled by a self-developed device control software 
(Labview). To reduce dispersion and wavefront distortions on the excitation path we use a 
thin-film metallic mirror (ND05B, Thorlabs). The metallic mirror has a transmission of 30% 
associated with a signal loss at the detector when compared to the multi-photon dichroic 
mirror (T680-SPRX, AHF F73-678) that we use for measurements with the uncompressed 
200 fs laser system, with >90% transmission in the multi-photon signal range of 400-670 nm 
and >90% reflection over 700-1080 nm. In our comparison of the effect of pulse length on the 
signal strength this loss is adequately accounted for. Signal collection is done in 
EPI/reflection mode via the microscope objective, and to ensure detection of the multi-photon 
signal, a PMT (H7422P-40 Hamamatsu, 5 mm diameter active area, spectral sensitivity range 
300-720 nm) is used for detection together with a transfer lens. For multi-photon imaging on 
2D cell samples, a 1.3 NA oil-immersion objective (100 × , WD 0.17 mm, CFI Plan Fluor, 
Nikon) is used. A 0.75 NA dry objective (40 × , WD 0.66 mm, Plan Fluorite Nikon) is used 
for deep tissue scanning. The emission filters used were a short pass filter (FF01-680/SP-25 
Blocking edge Brightline, Semrock), combined with a DAPI (FF02-447/60-25, Brightline, 
Semrock) and three Schott BG39 bandpass filters in series, if nothing else is indicated. The 
PMT module is read out by a single channel TCSPC module from Becker & Hickl, Berlin 
(SPC-130). 

2.3 Pulse characterization at-focus of a high NA microscope objective 

To characterize the narrowband pulse, we placed a pass-through interferometric 
autocorrelator in the beam path leading to the microscope, which creates a collinear beam 
with two pulse replicas of variable delay. This beam is then sent to the microscope and 
focused by the same objective that will be used for the imaging experiments. The effect of 
pulse compression of the narrowband laser system is seen in Fig. 1(c), where the obtained 
pulse widths are 200 fs for the uncompressed and 70 fs for the compressed pulse. In the case 
of the ultra-broadband laser we used a commercial d-scan compressor designed for high-NA 
objectives (Sphere Ultrafast Photonics) at the output of the 7 fs laser, before sending the beam 
to the microscope. In both cases the broadband SHG signal is detected with a commercial 
SHG measurement head designed for microscopes (Sphere Ultrafast Photonics). This 
measurement head is designed such that the second harmonic crystal can be precisely 
positioned at the focus of the objective, and the generated SHG signal is then detected with a 
fiber spectrometer. In the autocorrelation case the signal was spectrally integrated to yield the 
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interferometric autocorrelation trace. In the d-scan case the insertion-dependent, frequency-
resolved signal was analyzed using the d-scan algorithm, as seen in Fig. 1(d) for the 
broadband 7 fs laser system. The retrieved peak power for both laser systems based on the d-
scan measured pulse shapes is shown Fig. 1(e). 

3. Results and discussion 

3.1 SyncRGB imaging 

By adjusting the intracavity dispersion of the ultra-broadband 7 fs laser, its spectral profile 
can be optimized to match the absorption of various dyes in a multicolor labeled sample, as 
shown in Fig. 1(a), while maintaining a very broad bandwidth of more than 320 nm 
(measured at −10 dB in intensity) capable of supporting few-cycle pulse durations. Also the 
dispersion can be adjusted such that variations in the fluorescence quantum yield of the 
fluorescent labels can be accounted for by altering the relative weight of selected spectral 
components. Imaging is performed in a simple single detector microscope setup coupled to 
TCSPC electronics [22] (see Fig. 1(b)). Temporal pulse compression of both lasers is 
achieved directly at the focus of the microscope objective with the recently established d-scan 
technique [26,28]. Besides its in-line single-beam implementation and intrinsic few-cycle 
measurement capabilities, d-scan effectively provides the complete temporal profile of the 
pulses (intensity and phase) at the sample plane. Furthermore, the measured d-scan trace is a 
very intuitive tool for optimizing the spectral phase of the pulses and achieving maximum 
compression (see Fig. 1(c, d and e)). 

Multi-photon images created with the uncompressed and compressed standard 70 fs 
oscillator and with the ultra-broadband 7 fs oscillator are given in Fig. 2. For the first 
comparative analysis, only the total intensity (i.e. the integral of the TCSPC decay trace 
intensity in each pixel) will be regarded, while in the second part the TCSPC decay curves are 
analyzed for the same data. 

In the first part, three representative positions inside the cell nucleus (DAPI), cytoplasm 
(AlexaFlour488 and MitoTracker Red) and a cell-free area (background) were chosen in each 
image. Comparing the multi-photon image data shown in Fig. 2(a1, a2) and Fig. 2(b1,b2) 
reveals up to 12 times higher signal intensity for compressed (≈70 fs) as compared to 
uncompressed standard fs oscillator pulses (≈200 fs), which is a factor of 2 higher than 
reported in Ref [29]. The intensity gain corresponds to a τ-2.5 dependence on the pulse 
duration τ (see Fig. 1(d) in the Supporting Information). This increase is larger than the 
theoretically predicted τ−1 dependence [30,31], which clearly indicates the presence of higher-
order phase terms, apart from the linear chirp, in the uncompressed 200 fs pulses. 

Furthermore, the signal-to-noise ratio (S/N) in the case of DAPI improves considerably from 
S/N≈14 to S/N≈165 via pulse optimization. For cytoplasm areas we observe an increase from 
S/N≈2 to S/N≈19 upon at-focus pulse compression. Assignment of a common value for the 
cytoplasm areas stems from the single channel detection where intensity signals from both 
chromophores are detected simultaneously and not spectrally distinguished. Furthermore, for 
the excitation wavelengths provided by the standard laser system, only Alexa Fluor 488 will 
be efficiently excited in the cytoplasm, as seen in the spectral overlap in Fig. 1(a). The 
general enhanced sensitivity using the compressed pulses results in finer details being 
resolved in the multi-photon intensity image, here observed for higher DAPI signal contrasts 
within the nucleus in Fig. 2(b1) vs. 2(a1), and increased visibility of the actin filaments in Fig. 
2(b2) compared to Fig. 2(a2). 
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gives a negligible contribution from out-of-focus chromophores to our measured intensity 
signal. Scans for both laser systems are optimized to the same intensity level and the 
background level is set higher for the 7 fs laser system compared to the 70 fs system. 

Comparing Fig. 6(a) and 6(b) we see that we are able to retrieve a fluorescence signal for 
the 7 fs laser system from a depth of at least 600 µm, close to the working distance (WD) 
limit of the objective as compared to around 400 µm for the 70 fs laser system, which is in 
agreement with results in Refs [31,37–39]. – i.e., shorter pulse durations have a higher depth 
limit. Both laser systems show an increased collection efficiency for scan depths deeper than 
the sample surface, where the additional intensity contribution stems from a collection of 
scattered two-photon fluorescence photons. The enhancement maxima for both laser systems 
are at scan depth positions approximately equal to the effective FOV, indicating a larger 
collection efficiency for the broadband few-cycle 7 fs laser. Figure 6(c) is the MP-FLIM 
image stack of Fig. 6(b) obtained with the SyncRGB method – ultra-broadband excitation and 
broadband detection using a single detector attached to a TCSPC system, where the FLIM 
contrast helps identifying similar composition tissue areas. 

4. Conclusions 

In this work we demonstrate, for the first time, simultaneous excitation of multi-color labeled 
samples with chromophores in the red, green and blue (RGB) spectral range, which we 
accomplish by the use of an ultra-broadband few-cycle 7 fs laser source. Their signal can be 
detected e.g. via photon counting and wavelength filtering. We demonstrate that by using 
MP-FLIM detection and multi-exponential fitting of the photon arrival histograms, one can 
discern, in a single scan and using a single detector, nuclei, mitochondria, and F-actin, each 
labeled by different RGB chromophores. The ultra-broadband source effectively eliminates 
the need of laser wavelength tuning or multiple light sources resulting in potential faster scan 
times and reduced photo-induced damage. In this work we also show the advantage of shorter 
pulse length for achieving larger penetration depth in tissue MP imaging, reaching up to 50% 
deeper inside the tissue with the shorter 7 fs laser compared to the longer 70 fs laser. 
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